DRAFT The Mathematics Grade and Course Level Expectations draft document is an updated version to the March, 2004 K-12 Mathematics Grade Level Expectations. The original K- 12 document was organized by grade levels, whereas the attached draft document is organized by Grade Level Expectations (GLEs) in grades K – 8 and by Course Level Expectations (CLEs) for high school. The GLEs will provide the framework for instruction and assessment in grades K-8, while the CLEs will provide the framework for instruction and assessment for high school mathematics courses. Several K-16 mathematics educators have provided input on the updates, but we would like your input as well. The draft will be available for electronic feedback until **August 31**, **2007**. Please send all your comments, suggestions, and questions to the web reply following the directions below. #### To provide feedback on a specific Mathematics Grade Level or Course Level Expectation: - Provide all of the information listed below - Be sure to include the specific Grade or Course Level Expectation on which you are providing feedback - Submit to the curriculum web reply: webreplyimprcurr@dese.mo.gov | First Name: | |--| | Last Name: | | Middle Initial: | | Phone Number: | | Email Address: | | Position: | | Grade or Course Level Expectation Evaluated: | | Comments/Suggestions: | #### **DRAFT** #### **Mathematics Grade and Course Level Expectations:** A Framework for Instruction and Assessment The Mathematics Grade and Course Level Expectations outline related ideas, concepts, skills and procedures that form the foundation for understanding and learning mathematics. It includes updates to the March, 2004 K-12 Mathematics Grade Level Expectations. In addition, it provides a framework to bring focus to teaching, learning, and assessing mathematics. The Grade Level Expectations (GLEs) in grades K-8 specify mathematical content that students need to understand deeply and thoroughly for future mathematics learning. The Course Level Expectations (CLEs) for Algebra I, Geometry, and Algebra II outline rigorous mathematics expectations for students enrolled in traditional or integrated courses that will prepare them for success in college, the workplace, and effective participation in civic life. Since the Outstanding Schools Act of 1993, several documents have been developed prior to the 2004 K-12 *Grade Level Expectations* to aid Missouri school districts in creating curriculum that will enable all students to achieve their maximum potential. Those include: - The Show-Me Standards which identify broad content knowledge and process skills for all students to be successful as they continue their education, enter the workforce, and assume civic responsibilities - The Framework for Curriculum Development which provides districts with a "frame" for building curricula using the Show-Me Standards as a foundation - The Assessment Annotations for the Curriculum Frameworks which identify content and processes that should be assessed at the local and state level in grades 4, 8, and 10 mathematics Essential content, aligned to state and national documents that support inquiry-based instruction, included in the Grade and Course Level Expectations should be addressed in contexts that promote problem solving, reasoning, communication, making connections, and designing and analyzing representations. Each Grade and Course Level Expectation is aligned to the Show-Me Content and Process Standards (1996). A Depth-of-Knowledge level has been assigned to each grade or course level expectation. The Depth of Knowledge identifies the highest level at which the expectation will be assessed, based upon the demand of the GLE. Depth-of-Knowledge levels include: Level 1-recall; Level 2-skill/concept; Level 3-strategic thinking; and Level 4-extended thinking. The Grade and Course Level Expectations format with examples below includes: - black font 2004 K-12 Grade Level Expectations document to which no updates have been made - red font updated 2004 K-12 Grade Level Expectations - yellow highlights -- focus expectations for state assessments for grades 3-8 MAP assessments and End-of-Course Exams *It is essential to include all expectations in your course or grade level curriculum, not just those highlighted, as they are important components in the understanding and learning of mathematics. #### Original GLE assessed at local level Measurement Big Idea 2 Concept E Grade 6 | | appropriate techniques, tools and to determine measurements | |--|--| | Е | Grade 6 | | Uærdálorá ipsvith
asystemd
mæsuemert | convert from one unit to
another within a system
of measurement (mass
and weight) | | DOK | 1 | | ST | MA 2 1.6 | #### Updated GLE assessed at the local level Measurement Big Idea 2 Concept B Grade 7 | | appropriate techniques, tools and to determine measurements | |---------|--| | В | Grade 7 | | Usearge | use tools to measure
angles to the nearest
degree and classify the
angle as acute, obtuse,
right, straight or reflex | | DOK | 1 | | ST | MA 2 3.2 | Original GLE assessed in MAP Assessments Measurement Big Idea 1 Concept D Grade 4 | objects a | rstand measurable attributes of
and the units, systems and
es of measurement | |-----------|---| | D | Grade 4 | | Contard | determine change from
\$10.00 and add and
subtract money values
to \$10.00 | | DOK | 2 | | ST | MA 1 1.10 | Updated CLE assessed in MAP End-Of-Course Exam Measurement Big Idea 2 Concept C Geometry | | appropriate techniques, tools and
to determine measurements | |----------------------------|--| | C | Geometry | | Apply grownic near tenents | determine surface area
and volume of geometric
figures including cones,
spheres and cylinders | | DOK | 2 | | ST | MA 2 1.10 | Sources: College Board Standards for College Success: Mathematics (College Board, 2006). Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics (National Council of Teachers of Mathematics, 2007); Indicators of College Readiness within Missouri's Two-Year Colleges (Missouri Development Education Consortium); Depth-of-Knowledge Levels (Norman Webb); Mathematics Engineering Technology & Science (METS) Alliance Report (2006); Principles and Standards for School Mathematics (National Council of Teachers of Mathematics, 2000); Show-Me Standards (Missouri Department of Elementary and Secondary Education). | 1. U | nderstand nu | mbers, ways | of representing | ng numbers, re | elationships a | mong number | s and number | systems | | | | | |------------------------------------|---|--|--|---|---|--|--|---|--|--|---|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Read, write and compare numbers | rote counts to 100 | read, write,
and compare
whole numbers
less than 100 | read, write, and
compare whole
numbers less
than 1000 | read, write and
compare whole
numbers up to
10,000 | read, write and
compare and
whole numbers
less than
100,000 | read, write and compare whole numbers less than 1,000,000, unit fractions and decimals to hundredths (including location on the number line) | apply and understand whole numbers to millions, unit fractions and decimals to the thousandths (including location on the number line) | compare and order all positive rational numbers and finding their approximate location on a number line | compare and order all rational numbers including percents, and find their approximate location on a number line | compare and order rational and irrational numbers, including finding their approximate locations on a number line | compare and order rational and irrational numbers, including finding their approximate locations on a number line | compare and order rational and irrational numbers, including finding their approximate locations on a number line | | DOK
ST | 1
MA 5 1.10 | Represent and use rational numbers |
recognize ½ of a shape | recognize 1/2
and 1/4 of a
shape | recognize unit
fractions of a
shape | represents
commonly used
fractions:
halves, thirds
and fourths | use models,
benchmarks (0,
1/2 and 1) and
equivalent
forms to judge
the size of
fractions | recognize and generate equivalent forms of commonly used fractions and decimals | recognize and generate equivalent forms of fractions, decimals and benchmark percents | recognize and
generate
equivalent
forms of
fractions,
decimals and
percents | use fractions,
decimals and
percents to
solve problems | use real
numbers and
various models,
drawing, etc. to
solve problems | use real
numbers and
various models,
drawing, etc. to
solve problems | use real
numbers and
various models,
drawing, etc. to
solve problems | | DOK
ST | 1
MA 5 1.10 | 1
MA 5 | 1
MA 5 1.10 | 1
MA 5 1.10 | 2
MA 5 3.3 | 2
MA 5 3.3 | 2
MA 5 3.3 | 2
MA 5 3.3 | | C Compose and decompose numbers | use concrete objects to compose and decompose values up to 10 | compose or decompose whole numbers up to 20 using multiple strategies such as known facts, doubles and close to doubles, tens, and one place value | compose or decompose numbers by using a variety of strategies, such as using known facts, tens place value or landmark numbers to solve problems | recognize equivalent representations for the same number and generate them by decomposing and composing numbers | recognize equivalent representations for the same number and generate them by decomposing and composing numbers | recognize equivalent representations for the same number and generate them by decomposing and composing numbers, including expanded notation | recognize equivalent representations for the same number and generate them by decomposing and composing numbers | recognize equivalent representations for the same number and generate them by decomposing and composing numbers, including exponential notation | recognize equivalent representations for the same number and generate them by decomposing and composing numbers, including scientific notation | use a variety of
representations
to demonstrate
an
understanding
of very large
and very small
numbers | | use a variety of
representations
to demonstrate
an
understanding
of very large
and very small
numbers | | DOK | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | | ST | MA 1 1.6 | MA 5 1.6 | | MA 5 1.6 | | 1. U | Inderstand nu | umbers, ways | of representi | ng numbers, r | elationships a | mong number | s and number | systems co | ntinued | | | | |---|---------------|---------------------------------|---|---|---|--|--------------|------------|---------|-----------|----------|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | D | | skip count by
2s, 5s and 10s | skip count by
multiples of
numbers less | classify
numbers by
their | classify and
describe
numbers by | describe
numbers
according to | | | | | | | | Classify and describe numeric relationships | | | than 10 | characteristics,
including odd
and even | their characteristics, including odd, even, multiples and factors | their characteristics, including whole number common factors and multiples, prime or composite, and square numbers | | | | | | | | DOK | | 2 | 2 | 2 | 2 | 2 | | | | | | | | ST | | MA 5 1.6 | MA 5 1.6 | MA 5 1.6 | MA 5 1.6 | MA 5 1.10 | | | | | | | | 2. L | Inderstand m | eanings of op | erations and | how they rela | ate to one ano | ther | | | | | | | |--------------------------------|--------------|---|---|---|--|--|--|--|---|---|----------|-------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra I I | | Represent operations | Jan Van | represent/
model a given
situation
involving
addition and
subtraction of
whole numbers
using pictures,
objects, or
symbols | Represent/
model a given
situation
involving multi-
digit whole
number
addition or
subtraction | Represent/ model a given situation involving multiplication and related division using various models including sets, arrays, areas, repeated subtraction, sharing and partitioning | represent and recognize multiplication and related division using various models, including equal intervals on the number line, equal size groups, distributive property, etc. | represent and recognize division using various models, including quotative and partitive | | | | | | | | DOK
ST | | 2
MA 1 1.10 | 2
MA 1 1.10 | 2
MA 1 1.6 | 2
MA 1 1.6 | 2
MA 1 1.10 | | | | | | | | Describe effects of operations | | describe the effects of adding and subtracting whole numbers as well as the relationship between the two operations | | describe the effects of multiplying and dividing whole and whole numbers as well as the relationship between the two operations | | describe the effects of addition and subtraction on fractions and decimals | describe the
effects of
multiplication
and division on
fractions and
decimals | describe the effects of all operations on rational numbers including integers | | Describe the effects of operations, such as multiplication, division, and computing powers and roots on the magnitude of quantities | | | | DOK
ST | | 2
MA 1 1.10 | | 2
MA 1 1.10 | | 2
MA 1 1.10 | 2
MA 1 1.10 | 2
MA 1 1.10 | | 2
MA 1 1.10 | | | | Apply properties O | | | | NG 1 1.1V | | | apply properties of operations (including order of operations) to positive rational numbers | apply properties of operations (including order of operations) to positive rational numbers and integers | apply properties of operations to all rational numbers including order of operations and inverse operations | NG 1 1.1V | | | | DOK | | | | | | | 2
MA 1 110 | 1
MA 1 1 10 | 1
MA 1 1.10 | | | | | ST | | | | 1 | 1 | | MA 1 1.10 | MA 1 1.10 | MA 1 1.10 | 1 | | | | 2. U | nderstand mea | anings of op | erations and | how they rela | te to one ano | ther contin | ued | | | | | | |------------------------------|---------------|--------------|--------------|---------------|---------------|-------------|-----------------|-----------------|---------|------------------|------------------|------------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | | | | | | | identify and | approximate | | apply | apply | apply | | D | | | | | | | generate the | the value of | | operations to | operations to | operations to | | | | | | | | | relationship | square roots to | | real numbers, | real numbers, | matrices and | | ₽ | | | | | | | between | the nearest | | using mental | using mental | complex | | and | | | | | | | square | whole number | | computation or | computation or | numbers, using | | real | | | | | | | numbers and | | | paper-and- | paper-and- | mental | | ber 1 | | | | | | | whole number | | | pencil | pencil | computation or | | operations on complex number | | | | | | | roots and cubes | | | calculations for | calculations for | paper-and- | | בי בי | | | | | | | and whole | | | simple cases | simple cases | pencil | | atie lex | | | | | | | number cube | | | and technology | and technology | calculations for | | n du | | | | | | | roots | | | for more | for more | simple cases | | 9 5 | | | | | | | | | | complicated | complicated | and technology | | <u>S</u> | | | | | | | | | | cases | cases | for more | | Apply | | | | | | | | | | | | complicated | | | | | | | | | | | | | | cases | | DOK | | | | | | | 2 | 2 | | 2 | 2 | 2 | | ST | | | | | | | M 5 1.6 | MA 5 3.2 | | MA 1 1.10 | MA 1 1.10 | MA 1 1.10 | | 3. C | ompute fluen | ntly and make | reasonable es | stimates | | | | | | | | | |---|---|---|--|--
--|---|---|---|---------|-----------|----------|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Α | | describe or
represent the
mental strategy | describe or
notate the
mental | represent a
mental strategy
used to | represent a
mental strategy
used to | describe a
mental strategy
used to | | | | | | | | Describe or represent mental strategies | | used to
compute
addition and
subtraction
problems | strategy used to compute addition or subtraction of whole numbers, including multi-digit numbers | compute a
given
multiplication
problem up to 9
x 9 | compute a
given
multiplication
problem (up to
2-digit by 2-digit
multiple of) | compute a
given division
problem, where
the quotient is a
multiple of 10
and the divisor
is a 1-digit
number (e.g.,
350 /7) | | | | | | | | DOK
ST | | 2
MA 1 3.2 | 2
MA 1 3.2 | MA 1 3.2 | 2
MA 1 3.2, 3.3 | 2
MA 1 3.2 | | | | | | | | Develop and demonstrate fluency | connect
number words
(orally) and
quantities they
represent | Use strategies to develop fluency with basic number relationships of addition and subtraction for sums up to 20 | demonstrate fluency including quick recall with basic number relationships of addition and subtraction for sums up to 20 | use strategies develop fluency with basic number relationships (9 X 9) of multiplication and division | demonstrate
fluency with
basic number
relationships
(12 X 12) of
multiplication
and related
division facts | demonstrate
fluency with
efficient
procedures for
adding and
subtracting
decimals and
fractions (with
unlike
denominators)
and division of
whole numbers | | | | | | | | DOK | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | ST | MA 1 1.10 | MA.1 1.6 | MA.1 1.6 | MA.1 1.6 | MA.1 1.6 | MA 1 3.3 | | | | | | | | Compute problems O | | apply and
describe the
strategy used to
compute 2-digit
addition or
subtraction
problems
without
regrouping | apply and describe the strategy used to compute 3- digit addition or subtraction problems with regrouping | apply and describe the strategy used to compute up to a given multiplication of 1-digit by 2-digit numbers | apply and
describe the
strategy used to
compute a
given
multiplication of
2-digit by 2-digit
numbers and
related division
facts | apply and describe the strategy used to compute a given division problem up to a 3- digit by 2- digit and addition and subtraction of fractions and decimals | multiply and divide positive rational numbers | apply all operations on rational numbers including integers | | | | | | DOK | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | ST | | MA 1 3.2 | MA 1 3.1 | MA 1 3.1 | | | | | | 3. C | ompute fluent | tly and make r | easonable est | mates conti | nued | | | | | | | | |--------------------------------|---------------|----------------|--|--|---|--|---|---|---------|--|--|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | D | | | estimate sums
and differences
of whole | estimate and justify sums and differences of | estimate and justify products of whole | estimate and justify quotients of whole | estimate and justify the results of | estimate and justify the results of all | | judge the reasonableness of numerical | judge the reasonableness of numerical | judge the reasonableness of numerical | | Estimate and justify solutions | | | numbers | whole numbers | numbers and
decimal and
fractions | numbers and
sums and
differences of
decimals and
fractions | multiplication
and division of
positive rational
numbers | operations on
rational numbers | | computations
and their results | computations
and their results | computations
and their results,
including
complex
numbers | | DOK | | | 3 | 3 | 3 | 3 | 2 | 2 | | 2 | 2 | 2 | | ST | | | MA 1 3.2 | | MA 1 3.2 | MA 1 3.2 | MA 1 3.2 | | onal H | | | | | | | solve problems
using ratios and
rates | solve problems
involving
proportions,
such as scaling
and finding | | solve problems
involving
proportions | solve problems
involving
proportions | solve problems
involving
proportions | | Use proportional reasoning | | | | | | | | equivalent ratios | | | | | | DOK | | | | | | | 2 | 2 | | 2 | 2 | 2 | | ST | | | | | | 1 | MA 1 3.2 | MA 1 3.2 | | MA 1 3.2 | MA 1 3.3 | MA 1 3.2 | ### **Algebraic Relationships** | 1. l | Jnderstand pa | atterns, relation | ons and funct | ions | | | | | | | | | |-------------------------------|---|---|---|---|--|---|--|---|--|---|---|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Recognize and extend patterns | recognize or
repeat
- sequences of
sounds or
shapes | extend patterns
of sound,
shape, motion
or a simple
numeric pattern | describe and extend simple numeric patterns and change from one representation to another | extend
geometric
(shapes) and
numeric
patterns to find
the next term | describe
geometric and
numeric
patterns | make and describe generalizations about geometric and numeric patterns | | | | | | | | DOK | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | | ST | MA 4 1.6 | | | | | | | | analyze 🛱 | create and
continue
patterns | describe how simple repeating patterns are generated | describe how
simple <u>growing</u>
<u>patterns</u> are
generated | represent
patterns using
words, tables or
graphs | analyze
patterns using
words, tables
and graphs | represent and
analyze
patterns using
words, tables
and graphs | represent and
describe
patterns with
tables, graphs,
pictures, | analyze patterns represented graphically or numerically | generalize patterns represented graphically or numerically | generalize patterns using explicitly or recursively defined | generalize patterns using explicitly or recursively defined | generalize patterns using explicitly or recursively defined | | Create and an patterns | | | | | | | symbolic rules
or words | with words or symbolic rules | with words or
symbolic rules,
using explicit
notation | functions | functions | functions | | Create and patterns | 2 | 2 | 2 | 2 | 2 | 2 | or words | symbolic rules | symbolic rules,
using explicit
notation | 2 | 2 | 2 | | Create and patterns | 2
MA 4 1.6 | or words | symbolic rules | symbolic rules,
using explicit
notation | | | | | 1. U | nderstand | |--------------------------------|-------------| | | Kindergarte | | D | | | Identify and compare functions | | | DOK | | | ST | | | E | | | sts of
ges | | | 1. L | 1. Understand patterns, relations and functions continued | | | | | | | | | | | | | |---|---|---------|---------|---------|---------|---------|--|--|---|---|--|--|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | D | | | | | | | identify functions as linear or nonlinear from | identify functions as linear or nonlinear from | identify functions as linear or nonlinear from tables or graphs | understand and compare the properties of linear and nonlinear | apply appropriate properties of exponents to | compare
properties of
linear,
exponential,
logarithmic and | | | Identify and compare functions | | | | | | | tables or graphs | tables, graphs
or equations | tables of graphs | functions | simplify
expressions and
solve equations | rational
functions | | | DOK | | | | | | | 2 | 1
| 2 | 2 | 2 | 2 | | | ST | | | | | | | MA 4 1.6 | _ | | E | | | | | | | | | | describe the | | describe the | | | | | | | | | | | | | effects of parameter | | effects of parameter | | | | 1 | | | | | | | | | <u>changes</u> on | | <u>changes</u> on | | | o of | | | | | | | | | | <u>linear</u> , | | functions | | | cts | | | | | | | | | | exponential and | | | | | Describe the effects of parameter changes | | | | | | | | | | <u>quadratic</u> | | | | | e e | | | | | | | | | | functions | | | | | e th | | | | | | | | | | (include | | | | | rib | | | | | | | | | | intercepts) | | | | | esc | | | | | | | | | | | | | | | ۵ | | | | | | | | | | | | | | | DOK | | | | | | | | | | 2 | | 2 | = | | ST | | | | | | | | | | MA 4 1.6, 3.8 | | MA 4 1.6, 3.8 | | 2/01/05 ### **Algebraic Relationships** | 2. R | | | | | | | | | | | | | | |---|--------------|--|---|--|--|--|--|--|--|---|----------|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Α | | using addition
or subtraction,
represent a | using addition
or subtraction,
represent a | using all operations, represent a | using all operations, represent a | using all operations, represent a | use <u>symbolic</u>
<u>algebra</u> to
represent | use <u>symbolic</u>
<u>algebra</u> to
represent | use <u>symbolic</u>
<u>algebra</u> to
represent and | use <u>symbolic</u>
<u>algebra</u> to
represent and | | use <u>symbolic</u>
<u>algebra</u> to
represent and | | | mathematical | | mathematical situation as an expression or number | unknown
quantities in
expressions
and solve one- | unknown
quantities in
expressions an
solve linear | solve problems
that involve
linear
relationships, | solve problems
that involve
linear and
quadratic | | solve problems
that involve
exponential,
quadratic and | | | Represent situations | | sentence | sentence | sentence | sentence | sentence using
a letter or
symbol | step equations | equations with one variable | including
systems of
equations | relationships | | logarithmic
relationships | | | DOK
ST | | 2
MA 4 1.10 | 2
MA 4 3.3 | 2
MA 4 3.3 | 2
MA 4 3.3 | 2
MA 4 3.3 | | 2
MA 4 3.3 | | | В | | apply the commutative | solve problems with whole | use the commutative, | use the | use the | use the | use properties | use properties | describe and | | describe and | | | Describe and use
mathematical manipulation | | and associative
properties of
addition to
whole numbers | numbers using the commutative and associative properties of addition | distributive and associative properties of addition and multiplication for basic facts | commutative, distributive and associative properties of addition and multiplication for multidigit numbers | commutative,
distributive and
associative
properties for
fractions and
decimals | commutative,
distributive and
associative
properties to
generate
equivalent
forms for simple
algebraic
expressions | to generate equivalent forms for simple algebraic expressions that include positive rationals and integers | to generate equivalent forms for simple algebraic expressions that include all rationals | use algebraic manipulations, including factoring and rules of integer exponents and apply properties of exponents (including order of operations) to simplify expressions | | use algebraic manipulations, inverse of composition of functions | | | Mathematical manipulation | | properties of addition to | numbers using
the
commutative
and associative
properties of | distributive and associative properties of addition and multiplication | distributive and associative properties of addition and multiplication for multidigit | distributive and associative properties for fractions and | distributive and associative properties to generate equivalent forms for simple algebraic | equivalent
forms for simple
algebraic
expressions that
include positive
rationals and | equivalent
forms for simple
algebraic
expressions that
include all | manipulations, including factoring and rules of integer exponents and apply properties of exponents (including order of operations) to simplify | | use algebraic
manipulations,
inverse of
composition of | | | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | |---------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------------------|----------|--------------------------| | ; | | | | | | | | | | use and solve | | use and solve equivalent | | | | | | | | | | | | equivalent forms of | | forms of | | | | | | | | | | | | equations and | | equations and | | | | | | | | | | | | inequalities | | inequalities | | | | | | | | | | | | (linear, piece- | | | | 5 | | | | | | | | | | wise and quadratic) | | | | forms | | | | | | | | | | quadratic) | | | | \$ 5 | | | | | | | | | | | | | | ОК | | | | | | | | | | 2 | | 2 | | T | | | | | | | | | | MA 4 3.2 | | MA 4 3.2 | |) | | | | | | | | | | use and solve | | use and solve | | , | | | | | | | | | | systems of linear equations | | systems of linear and | | | | | | | | | | | | or inequalities | | quadratic | | ms
E | | | | | | | | | | with 2 variables | | equations or | | sten | | | | | | | | | | | | inequalities with | | S | | | | | | | | | | | | 2 variables | | ize | | | | | | | | | | | | | | Utilize | 2 | | 2 | | T | 1 | | | | | | + | | | MA 4 1.6 | | MA 4 1.6 | ### **Algebraic Relationships** | 3. U | | | | | | | | | | | | | | |-------------------------|---|---|---|---|--|--|--|--|---|--|--|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Use mathematical Models | model
situations that
involve whole
numbers, using
pictures,
objects or
symbols | model situations
that involve the
addition of
whole numbers,
using pictures,
objects or
symbols | model situations that involve addition and subtraction of whole numbers, using pictures, objects or symbols | model problem situations, including multiplication with objects or drawings | model problem
situations, using
representations
such as graphs,
tables or
number
sentences | model problem situations and draw conclusions, using representations such as graphs, tables or number sentence | model and solve
problems, using
multiple
representations
such as tables,
expressions and
one-step
equations | model and solve
problems, using
multiple
representations
such as graphs,
tables,
expressions,
and linear
equations | model and solve problems, using multiple representations such as graphs, tables, and linear equations, including systems of | identify quantitative relationships and determine the type(s) of functions that might model the situation to solve the problem | identify quantitative relationships and determine the type(s) of functions that might model the situation to solve the problem | identify quantitative relationships and determine the type(s) of functions that might model the situation to solve the problem | | | DOK | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | equations 2 | 2 | 2 | 2 | | | ST | MA 1 1.6, 3.6 | MA 1 1.6,3.6 | MA 1 1.6,3.6 | MA 4 1.6 | MA 4 1.6 | MA 4 1.6 | MA 4 3.6 | MA 4 1.6,3.6 | MA
4 3.6 | MA 4 1.6 | MA 4 1.6 | MA 4 1.6 | | | 4. | 4. Analyze change in various contexts | | | | | | | | | | | | |----------------|---------------------------------------|---------|--|---|---|---|---|---|---|---|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Analyze change | | | describe qualitative change, such as students growing taller | describe quantitative change, such as students growing two inches in a year | describe
mathematical
relationships in
terms of
constant rates
of change | identify, model
and describe
situations with
constant or
varying rates of
change | construct and
analyze tables
to compare
situations with
constant or
varying rates of
change | compare
situations with
constant or
varying rates of
change | analyze the
nature of
changes
(including slope
and intercepts)
in quantities in
linear
relationships | analyze linear
and quadratic
functions by
investigating
rates of change,
intercepts and
zeros | analyze linear
functions by
investigating
rates of change
and intercepts | analyze
exponential and
logarithmic
functions by
investigating
rates of change,
intercepts and
asymptotes | | DOK | | | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | | ST | | | MA 4 1.6 | 1. A | 1. Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships | | | | | | | | | | | | | |--|---|--|--|---|--|--|---------|--|--|---|---|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Α | identify and
describe 2-
and 3-
dimensional | identify, name
and describe 2-
and 3-
dimensional | describe attributes and parts of 2- and 3-dimensional | compare and
analyze 2-
dimensional
shapes by | name and identify properties of 1-, 2- and 3- | analyze and
classify 2- and
3-dimensional
shapes by | | identify the 2-
diimensional
cross-section of
a 3-dimensional | describe,
classify and
generalize
relationships | | use inductive
and deductive
reasoning to
establish the | use
trigonometric
relationships
with right | | | Describe and use geometric relationships | shapes using physical models (circle, rhombus, rectangle, triangle, sphere, rectangular prism, cylinder, pyramid) that represent shapes in their environment (stop sign, number cube, and ball) | shapes using physical models (circle, triangle, trapezoid, rectangle, rhombus, sphere, rectangular prism, cylinder, pyramid) | shapes (circle, triangle, trapezoid, rectangle, rhombus, sphere, rectangular prism, cylinder, pyramid) | describing their attributes (circle, rectangle, rhombus, trapezoid, triangle) | dimensional
shapes describe
the attributes of
2- and 3-
dimensional
shapes using
appropriate
geometric
vocabulary
(rectangular
prism, cylinder,
pyramid,
sphere, cone,
parallelism,
perpendicularity | describing the attributes | | shape | between and among types of a) 2-dimensional objects and b) 3-dimensional objects using their defining properties including Pythagorean Theorem | | validity of geometric conjectures, prove theorems and critique arguments made by others | triangles to
determine
lengths and
angle measures | | | DOK | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | 3 | | 3 | 3 | | | ST | MA 2 1.10 | | MA 2 1.10 | MA 2 1.6 | | MA 2 3.5 | MA 2 3.2 | | | В | | | | | | | | describe
relationships
between | | apply geometric properties such as similarity and | | | | | Apply geometric relationships | | | | | | | | corresponding sides, corresponding angles and corresponding perimeters of similar polygons | | angle
relationship to
solve multi-step
problems in 2
dimensions | | | | | DOK | | | | | | | | 2 | | 2 | | | | | ST | | | | | | | | MA 2 1.6 | - | MA 2 3.6 | | | | ### **Geometric and Spatial Relationships** | | 1. Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships – continued | | | | | | | | | | | | | |------------------------------|---|---------|--|--|---|---------|---------|---------|-----------|----------|------------|--|--| | | Kindergarten Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | | Compose and decompose shapes | use models to
compose and
decompose 2-
dimensional
shapes | | predict the
results of
putting together
or taking apart
2- and 3-
dimensional
shapes | describe the results of subdividing, combining and transforming shapes | predict and justify the results of subdividing, combining and transforming shapes | | | | | | | | | | DOK | 2 | | 3 | 2 | 2 | | | | | | | | | | ST | MA 2 1.6 | | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | | | | | | | | | | 2. 5 | 2. Specify locations and describe spatial relationships using coordinate geometry and other representational systems | | | | | | | | | | | | | | |---------------------------|--|---|--|---|---|---|---------|---|---|-----------|---|------------|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | | ordinate systems A | describe, name
and interpret
relative
positions in
space (above,
below, front,
behind) | describe, name
and interpret
relative
positions in
space (left,
right) | find and name
locations with
simple
relationships on
a map
(coordinate
system) | describe location using common language and geometric vocabulary (forward, back, left, right, north, south, east, west) | describe movement using common language and geometric vocabulary (forward, back, left, right, north, south, east, west) | use <u>coordinate</u> <u>systems</u> to specify locations, describe paths and find the distance between points along horizontal and | | use coordinate geometry to construct and identify geometric shapes in the coordinate plane using their properties | use coordinate geometry to analyze properties of right
triangles and quadrilaterals (including the use of the Pythagorean | J | make conjectures and solve problems involving 2- dimensional objects represented with Cartesian coordinates | | | | | DOK COO | 2 | 2 | 2 | east, west) | east, west) | vertical lines | | 2 | Theorem) | | 2 | | | | | ST | MA 2 1.10 | MA 2 1.10 | MA 2 3.1 | MA 2 1.10 | MA 2 1.10, 3.3 | MA 2 1.10 | | MA 2 1.8, 3.2 | MA 2 3.2 | | MA 2 3.3 | | | | ### **Geometric and Spatial Relationships** | 3. <i>I</i> | 3. Apply transformations and use symmetry to analyze mathematical situations | | | | | | | | | | | | | |----------------------------------|--|---|--|--|---|--|---|---|--|-----------|---|---|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Use transformations A on objects | use manipulatives to recognize from different perspectives and orientations models of slides and turns | use
manipulatives
to model flips | use
manipulatives
to model slides
and turns | determine if
two objects are
congruent
through a slide,
flip or turn | predict the results of sliding/ translating, flipping/ reflecting or turning/ rotating around the center point of a polygon | predict, draw and describe the results of sliding/translating, flipping/reflecting and turning/rotating around a center point of a polygon | Orace o | Grade 7 | reposition
shapes under
formal
transformations
such as
reflection,
rotation and
translation | Aigesia i | use and apply constructions and the coordinate plane to represent translations, reflections, rotations and dilations of objects | Algebra | | | ST | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | MA 2 3.2 | MA 2 3.6 | MA 2 3.6 | | | MA 2 3.6 | | MA 2 1.10 | | | | Use transformations on functions | | | | | | | | describe the relationship between the scale factor and the perimeter of the image using a dilation (contractions-magnifications) (stretching/shrinking) | | | | translate, dilate and reflect functions | | | ST | | | | | | | | MA 2 3.6 | | | | MA 4 3.1 | | | Use Symmetry | | recognize
shapes that
have symmetry | create shapes
that have
symmetry | identify lines of
symmetry in
polygons | construct a
figure with
multiple lines of
symmetry and
identify the
lines of
symmetry | identify
polygons and
designs with
rotational
symmetry | construct
polygons and
designs with
rotational
symmetry | determine all
lines of
symmetry of a
polygon | identify the
number of
rotational
symmetries of
regular
polygons | | identify types of
symmetries of
2- and 3-
dimensional
figures | | | | DOK | | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | | 2 | | | | ST | | MA 2 1.10 | MA 2 1.10 | MA 2 1.10 | MA 2 1.10 | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | | MA 2 1.10 | | | # **Geometric and Spatial Relationships** | 4. L | 4. Use visualization, spatial reasoning and geometric modeling to solve problems | | | | | | | | | | | | | |--|--|---------|---------|---------|--|---|--|--|---|--|--|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Α | | | | | given the picture of a prism, identify | given a <u>net of a</u>
<u>prism</u> or
cylinder, | use spatial
visualization to
identify | use spatial visualizations to identify various | create <u>isometric</u>
drawings from a
given <u>mat plan</u> | | draw and use
vertex-edge
graphs or | | | | Recognize and draw three-
dimensional representations | | | | | the shapes of
the faces | identify the 3-
dimensional
shape | isometric
representations
of mat plans | 2-dimensional views of isometric drawings | given <u>mat plan</u> | | networks to find optimal solutions and draw representations of 3-dimensional geometric objects from different perspectives | | | | DOK | | | | | 2 | 2 | 2 | 2 | 2 | | 3 | | | | ST | | | | | MA 2 3.3 | | MA 2 4.1 | | | | В | | | | | | | draw or use visual models to represent and | draw or use visual models to represent and | draw or use visual models to represent and | draw or use visual models to represent and | draw or use visual models to represent and | draw or use visual models to represent and | | | Draw and use visual models | | | | | | | solve problems | solve problem | solve problems | solve problems | solve problems | solve problems | | | DOK | | | | | | | 2 | 2 | 2 | 2 | 2 | 2 | | | ST | | | | | | | MA 2 3.3 | | | 1. l | 1. Understand measurable attributes of objects and the units, systems and processes of measurement | | | | | | | | | | | | | |---------------------------------|--|---|--|--|--|--|---|---|---------|-----------|----------|------------|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Α | compare and order objects according to | select the appropriate tool for the attribute | select an appropriate unit and tool for the | Identify, justify and use the appropriate unit | identify and
justify the unit
of linear | identify and justify the unit of measure for | identify and justify the unit of measure for | identify and
justify the unit
of measure for | | | | | | | Determine unit of measurement | their size or
weight | being measured
(size,
temperature,
time, weight) | attribute being measured (size, temperature, time, weight) and to the nearest inch, centimeter, degree, hour and pound | of measure
(linear, time,
weight) | measure
including
perimeter and
(customary
metric) | area (customary
and metric) | area and
volume
(customary and
metric) | volume
(customary and
metric) | | | | | | | DOK | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | | ST | MA 2 1.8 | MA 2 3.1 | | | | | | B | | | | | identify equivalent linear measures within a system of measurement | identify the equivalent weights and equivalent capacities within | | identify the equivalent area and volume measures within a system of | | | | | | | Identify equivalent
measures | | | | | | a system of measurement | | measurement
(e.g., sq ft. to
sq in, m³ to c
m³) | | | | | | | DOK | | | | | 1
MA 2 1.6 | 1
MA 2 1.6 | | 1
MA 2 1.6 | | | | | | | C C | describe
passage of | tell time to the nearest half | tell time to the nearest one | tell time to the nearest five | tell time to the nearest minute | IVIA Z 1.0 | solve problems involving | solve problems involving | | | | | | | Tell and use units of time | time using
terms such as
today,
yesterday,
tomorrow | hour | fourth (quarter)
hour | minutes | | | elapsed time
(hours and
minutes) | addition and
subtraction of
time (hours,
minutes and
seconds) | | | | | | | DOK | 2 | 1
MA 2 2 2 | 1
MA 2 2 2 | 1
MA 2 2 2 | 1 | | 1
MA E 2 2 | 1
MA E 2.2 | | | | | | | ST | MA 2 3.2 | | MA 5 3.2 | MA 5 3.2 | | | | | | | 1. L | Jnderstand m | easurable att | ributes of ob | jects and the | units, systems | and processe | es of measure | ment conti | nued | | | | |-------------------------|------------------------------|---|------------------------------|---|---|--------------|---------------|------------|---------|-----------|----------|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Count and compute money | nickel, dime,
and quarter | count money to
a
dolllar,
including half
dollars | make change
from a dollar | determine
change from
\$5.00 and add
and subtract
money values
to \$5.00 | determine
change from
\$10.00 and add
and subtract
money values
to \$10.00 | | | | | | | | | DOK | 2 | 2 | 2 | 2 | 2 | | | | | | | | | ST | MA 1 1.10 | | | | | | | | | 2. <i>I</i> | 2. Apply appropriate techniques, tools and formulas to determine measurements | | | | | | | | | | | | |--|---|---|---|---|---|---|--|---|--|-----------|---|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Use standard or non-standard measurement | measure
objects by
comparison of
lengths
(shorter, same,
longer) | use repetition of a single unit to measure something larger than the unit, (e.g. length of book with paper clips) | use standard
units of
measure (cm,
inch) and the
inverse
relationships
between the
size and
number of units | use a referent
for measures to
make
comparisons
and estimates | select and use benchmarks to estimate measurements (linear, capacity, weight) | | | | | | | | | DOK | 2 | 2 | 2 | 2 | 2 | | | | | | | | | ST | MA 2 1.6 | | | | | | | | | Use angle measurement | | | | | select and use benchmarks to estimate measurements of 0-, 45- (acute), 90- (right) greater than 90 (obtuse) degree angles | | | use tools to
measure angles
to the nearest
degree and
classify the
angle as acute,
obtuse, right,
straight, or
reflex | solve problems
of angle
measure,
including those
involving
triangles and
parallel lines
cut by a
transversal | | solve problems of angle measure, including those involving triangles or other polygons and of parallel lines cut by a transversal | | | DOK
ST | | | | | MA 2 3.2 | | | 1
MA 2 3.2 | 1
MA 2 3.2 | | 1
MA 2 3.1 | | | Apply geometric C | | | | determine the perimeter of polygons | determine and
justify areas of
polygons and
non-polygonal
regions
imposed on a
rectangular grid | determine volume by finding the total number of the same size units needed to fill a space without gaps or overlqps | solve problems
involving the
area or
perimeter of
polygons | solve problems involving circumference and/or area of a circle and surface area/volume of a rectangular or triangular prism, or cylinder | | | determine the
surface area,
and volume of
geometric
figures,
including cones,
spheres, and
cylinders | | | DOK
ST | | | | 2
MA 2 1.10 | 2
MA 2 1 10 | 2
MA 2 1 10 | 2
MA 2 1.10 | MA 2 1 10 | | | 2
MA 2 1 10 | | | SI | | | | IVIA 2 1.10 | MA 2 1.10 | MA 2 1.10 | IVIA 2 1.10 | MA 2 1.10 | | | MA 2 1.10 | | | 2. A | 2. Apply appropriate techniques, tools and formulas to determine measurements continued | | | | | | | | | | | | | |---|---|---------|---------|---------|---------|---|---|--|---|---|---|---|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Analyze precision | | | | | | | | | analyze precision and accuracy in measurement situations and determine number of significant digits | describe the effects of operations, such as multiplication, division and computing powers and roots on magnitudes of quantities and effects of computation on precision which include the judging of reasonable of numerical computations and their results | | apply concepts of successive approximation | | | DOK | | | | | | | | | 2 | 2 | | 2 | | | ST | | | | | | | | | MA 2 1.7 | MA 2 1.7 | | MA 2 1.6 | | | Use relationships within a measurement system | | | | | | convert from one unit to another within a system of linear measurement (customary and metric) | convert from one unit to another within a system of measurement (mass and weight) | convert from one unit to another within a system of measurement (capacity) and convert square or cubic units within the same system of measurement | | use <u>unit</u> <u>analysis</u> to solve problems | use <u>unit</u> <u>analysis</u> to solve problems | use <u>unit</u> <u>analysis</u> to solve problems involving rates, such as speed, density or population density | | | DOK | | | | | | 1 | 1 | 1 | | 2 | 2 | 2 | | | ST | | | | | | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | | MA 4 1.10 | MA 4 1.10 | MA 4 1.10 | | | 1. F | 1. Formulate questions that can be addressed with data and collect, organize and display relevant data to answer them | | | | | | | | | | | | |------------------------------|---|--|---|--|--|--|--|--|--|---|---|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Formulate questions | | pose questions
and gather data
about
themselves and
their
surroundings | pose questions
and gather data
about
themselves and
their
surroundings | design
investigations
to address a
given question | collect data
using
observations,
surveys and
experiments | evaluate data-
collection
methods | formulate
questions,
design studies
and collect data
about a
characteristic | | | formulate questions and collect data about a characteristic which include sample spaces and | formulate and collect data about a characteristic | | | DOK
ST | | 3
MA 3 1.2 | | | distributions 3 MA 3 1.2 | 3
MA 3 1.2 | | | В | sort items according to their attributes | sort and classify items according to their | sort and classify items according to their | | | | | | | | | | | Classify and organize data | - their <u>attributes</u> | attributes_ | attributes and organize data about the items | | | | | | | | | | | DOK | 3 | 3 | 3 | | | | | | | | | | | ST | MA 2 1.8 | MA 2 1.8 | MA 3 1.8 | | | | | | | | | | | Represent and interpret data | create graphs
using physical
objects | Represent one-
to-one
correspondence
data using
pictures and bar
graphs | represent one-
to-many
correspondence
data using
pictures and bar
graphs | read and interpret information from line plots and graphs (bar, line, pictorial) | create tables or graphs to represent categorical and numerical data (including line plots) | describe methods to collect, organize and represent categorical and numerical data | interpret circle
graphs; create
and interpret
stem-and-leaf
plots | select, create
and use
appropriate
graphical
representation
of data,
including circle
graphs, | select, create
and use
appropriate
graphical
representation
of data
(including
scatter plots) | select and use appropriate graphical
representation of data and given one-variable quantitative | select and use appropriate graphical representation of data and given one-variable quantitative | select and use appropriate graphical representation of data and given one-variable quantitative | | DOK | 2 | 2 | 2 | 2 | 2 | 2 | 2 | histograms) | and box plots
(box and
whiskers) | data, display
the distribution
and describe its
shape | data, display
the distribution
and describe its
shape | data, describe its shape and calculate summary statistics 2 | | ST | MA 3 1.8 | MA 3 1.8 | MA 3 1.8 | MA 3 1.10 | MA 3 1.8 | MA 3 1.2 | MA 3 1.8 | MA 3 1.8 | MA 3 1.8 | MA 6 1.8 | MA 6 1.8 | MA 3 1.8 | | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | |-----------------|--------------|---------|---------|-----------------------------|--------------------------|---------------------------|---|--|---|-----------------------------------|----------|--| | 1 | | | | describe the shape of data | describe important | compare related data sets | find the <u>range</u>
and <u>measures</u> | find, use and interpret | find, use and interpret | apply statistical measures of | | apply statistical measures of | | alialyze data | | | | and analyze it for patterns | features of the data set | | of center,
including
median, mode
and mean | measures of
center and
spread,
including ranges | measures of
center, outliers
and spread,
including range
and | center to solve
problems | | center to solve
problems | | | | | | | | | | | <u>interquartile</u>
<u>range</u> | | | | | K | | | | MA 3 1.6 | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | | 3 | | | | MA 3 1.6 | MA 3 3.2 | MA 3 1.5 | MA 3 3.2 | MA 3 3.2 | MA 3 3.2 compare different representations of the same data and | MA 3 3.2 | | MA 3 3.2 | | representations | | | | | | | | | evaluate how well each representation shows important aspects of the data | | | | | K | | | | | | | | | 3 | | | | | C | | | | | | | | | MA 3 1.10 | given a scatterplot, determine an | | given a scatterplot, determine a | | algebraically | | | | | | | | | | equation for a line of best fit | | type of function which models the data | | ΣK | | | | | | | | | | 2 | | 2 | | | | | | | | | | | | MA 3 1.6 | | MA 3 1.6 | | 3. D | 3. Develop and evaluate inferences and predictions that are based on data | | | | | | | | | | | | | |--------------------------------------|---|---------|---------|---|--|--|---|---|---|---|----------|------------|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Α | | | | discuss events
related to
students' | given a set of
data, propose
and justify | given a set of
data make and
justify | use
observations
about | use
observations
about | make
conjectures
about possible | make
<u>conjectures</u>
about possible | | | | | Develop and evaluate inferences | | | | experiences as
likely or unlikely | conclusions that
are based on
the data | predictions | differences between 2 samples to make conjectures about the | differences between samples to make conjectures about the | relationships
between 2
characteristics
of a sample on
the basis of
scatter plots of | relationships
between 2
characteristics
of a sample on
the basis of
scatter plots of | | | | | | | | | | | | populations
from which the
samples were
taken | populations
from which the
samples were
taken | the data and approximate lines of fit | the data | | | | | DOK | | | | 2 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | ST | | | | MA 3 3.5 | | | | В | | | | | | | | | | | | | | | Analyze basic statistical techniques | | | | | | | | | | | | | | | DOK | | | | | | | | | | | | | | | ST | | | | | | | | | | | | | | | 4. | Understand a | nd apply basi | c concepts of | probability | | | | | | | | | |-------------------------------------|--------------|---------------|---------------|-------------|---------|-----------------------------|-------------------------|-------------------------|---------|-----------|----------|-------------------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | | | | | | describe the | use a model | use models to | | | | describe the | | Α | | | | | | degree of | (diagrams, list, | compute the | | | | concepts of | | | | | | | | likelihood of | sample space, | probability of | | | | sample space | | ots | | | | | | events using | or area model) | an event and | | | | and <u>probability</u> | | Z Ce L | | | | | | such words as | to illustrate the | make | | | | distribution | | iii s | | | | | | certain, equally likely and | possible outcomes of an | conjectures
(base on | | | | | | Apply basic concepts of probability | | | | | | impossible | event | theoretical | | | | | | bas | | | | | | Impossible | CVCIII | probability) | | | | | | | | | | | | | | about the | | | | | | dd | | | | | | | | results of | | | | | | | | | | | | | | experiments | | | | | | DOK | | | | | | 2 | 2 | 2 | | | | 2 | | ST | | | | | | MA 3 1.10 | MA 3 1.10, 3.2 | MA 3 3.3 | | | | MA 3 3.1 | | В | | | | | | | | | | | | use and | | Ь | | | | | | | | | | | | describe the | | | | | | | | | | | | | | concepts of conditional | | ts e | | | | | | | | | | | | probability and | | rib | | | | | | | | | | | | independent | | lesc
lesc | | | | | | | | | | | | events and how | | p p | | | | | | | | | | | | to compute the | | an | | | | | | | | | | | | probability of a | | Use and describe compound events | | | | | | | | | | | | compound | | – 3 | | | | | | | | | | | | <u>event</u> | | DOK | | | | | | | | | | | | 2 | | ST | | | | | | | | | | | | MA 3 3.1 |